COMPACT FOUR-DIMENSIONAL EINSTEIN MANIFOLDS

YOSHIHIRO TASHIRO

There are few known examples of compact four-dimensional Einstein manifolds (see N. Hitchin [1]), and all of them are symmetric. The purpose of this paper is to give a class of Einstein manifolds having the following properties: They are diffeomorphic to a product $S^2 \times S^2$ of two 2-spheres, not symmetric, and their sectional curvatures are not definite. The source is a theorem in [2] on a conformal diffeomorphism of a product Riemannian manifold to a 4-dimensional manifold with parallel Ricci tensor.

1. We consider a function ρ of a variable x satisfying the differential equation

$$\{\rho'(x)\}^2 = -4C\rho^3 + 2B\rho - A,$$

which is rewritten in the form

$$(1.2) \qquad \left\{ \rho'(x) \right\}^2 = -4C(\rho - \alpha)(\rho - \beta)(\rho - \gamma) \quad (\alpha < \beta > \gamma),$$

where A, B, C are constants, C > 0, and $\rho'(x)$ denotes the ordinary derivative of ρ with respect to x. Then the constants α , β and γ satisfy

(1.3)
$$\alpha + \beta + \gamma = 0, \\ 2C(\alpha\beta + \beta\gamma + \gamma\alpha) = -B, \\ 4C\alpha\beta\gamma = -A,$$

 $\alpha > 0$, $\gamma < 0$, and β and A have the same sign.

The function ρ is a real periodic elliptic function in the range $[\beta, \alpha]$. By use of Jacobi's elliptic functions with modulus $k = \sqrt{\alpha - \beta} / \sqrt{\alpha - \gamma}$, the function ρ is expressed as

(1.4)
$$\rho = \frac{\beta - \gamma k^2 \operatorname{sn}^2 u}{\operatorname{dn}^2 u},$$

where we have put $u = \sqrt{C(\alpha - \gamma)} x$ for simplicity. We denote by 4K the periodicity modulus of Jacobi's elliptic functions, and put $L = K/\sqrt{C(\alpha - \gamma)}$.

Communicated by K. Yano, February 23, 1981.

The function ρ is of period 2L, and takes the minimum value β at x=0 and the maximum value α at x=L. The derivative of ρ in x is given by

(1.5)
$$\rho'(x) = \frac{2\sqrt{C}(\alpha - \beta)(\beta - \gamma)\operatorname{sn} u \operatorname{cn} u}{\sqrt{\alpha - \gamma} \operatorname{dn}^3 u}.$$

The second derivative $\rho''(x)$ satisfies the differential equation

(1.6)
$$\rho''(x) = -6C\rho^2 + B,$$

and takes the values

$$\rho''(0) = 2C(\beta - \gamma)(\alpha - \gamma) > 0,$$

$$\rho''(L) = 2C(\alpha - \gamma)(\beta - \alpha) < 0$$

in consequence of the relations (1.3).

Now let S be a 2-dimensional manifold with metric form

(1.9)
$$ds^2 = dx^2 + \{\rho'(x)\}^2 dy^2,$$

where y is the arc-length of a circle. We shall show that S is diffeomorphic to a 2-sphere, because ρ has the period 2L and $\rho'(x)$ vanishes at x=0 and x=L. Let O and O' be the points corresponding to x=0 and x=L respectively.

The complementary modulus k' of k is defined by

$$k'^2 = 1 - k^2 = \frac{\beta - \gamma}{\alpha - \gamma}.$$

We define a parameter $\theta(x)$ by

$$\theta(x) = 2\arctan\left[\operatorname{sn} u/\left(\operatorname{cn} u\right)^{k^{2}}\right].$$

This parameter θ has the limits

$$\lim_{x\to 0}\theta(x)=0,\quad \lim_{x\to L}\theta(x)=\pi,$$

and varies in the closed interval $[0, \pi]$ as x varies in [0, L]. Deriving θ in x, we have

$$\frac{d\theta}{dx} = \frac{2\sqrt{C(\alpha - \gamma)} \operatorname{dn}^{3} u}{(\operatorname{cn} u)^{2-k^{2}} + (\operatorname{cn} u)^{k^{2}} \operatorname{sn}^{2} u}$$

and the relation

$$\frac{d\theta}{\sin\theta} = \frac{bdx}{\rho'(x)},$$

where we have put $b = 2C(\alpha - \beta)(\beta - \gamma)$. The metric form of S is given by

$$ds^{2} = \left(\frac{\rho'(x)}{b\sin\theta}\right)^{2} \left[d\theta^{2} + b^{2}\sin^{2}\theta \,dy^{2}\right].$$

The expression in the brackets is the polar form of the metric of an ellipsoid of revolution. We can verify that the factor $\rho'(x)/(b\sin\theta)$ has the value

$$\left(\frac{\rho'(x)}{b\sin\theta}\right)_0 = \left(\frac{dx}{d\theta}\right)_0 = \frac{1}{2\sqrt{C(\alpha-\gamma)}},$$

and is differentiable at x = 0. Therefore the open subset $S - \{O'\}$ of S is conformal to the ellipsoid of revolution excluded with a point and has a differentiable structure.

On the other hand, we put

$$x' = L - x, \quad u' = K - u,$$

the former x' is the arc-length of the x-coordinate curves measured from the point O', and the latter u' is related to x' by $u' = \sqrt{C(\alpha - \gamma)} x'$. Since

$$\operatorname{sn}(K - u') = \frac{\operatorname{cn} u'}{\operatorname{dn} u'}, \quad \operatorname{cn}(K - u') = k' \frac{\operatorname{sn} u'}{\operatorname{dn} u'},$$
$$\operatorname{dn}(K - u') = \frac{k'}{\operatorname{dn} u'},$$

the function ρ is expressed as

$$\rho'(L - x') = (\beta \, dn^2 \, u' - \gamma k^2 \, cn^2 \, u') / k'^2$$

with respect to x'. The derivative of ρ in x' is equal to

$$\rho'(L-x') = -2\sqrt{C(\alpha-\gamma)}(\alpha-\beta)\operatorname{sn} u'\operatorname{cn} u'\operatorname{dn} u'.$$

We define a parameter θ' by

$$\theta' = 2 \arctan \left[\operatorname{sn} u' (\operatorname{dn} u')^{k^2/k'^2} / (\operatorname{cn} u')^{1/k'^2} \right].$$

Then we have

$$\frac{d\theta'}{dx'} = \frac{2\sqrt{C(\alpha - \gamma)} (\operatorname{cn} u' \operatorname{dn} u')^{k^2/k'^2}}{(\operatorname{cn} u')^{2/k'^2} + \operatorname{sn}^2 u' (\operatorname{dn} u')^{2k^2/k'^2}}$$

and the relation

$$\frac{d\theta'}{\sin\theta'} = \frac{a\,dx'}{\rho'(L-x')},$$

where we have put $a = 2C(\alpha - \beta)(\alpha - \gamma)$. The metric form of S is expressed as

$$ds^{2} = \left(\frac{\rho'(L-x')}{a\sin\theta'}\right)^{2} \left[d\theta'^{2} + a^{2}\sin^{2}\theta'dy^{2}\right],$$

and we can verify that the factor $\rho'(L-x')/(a\sin\theta')$ has the value

$$\left(\frac{\rho'(L-x')}{a\sin\theta'}\right)_0 = \frac{1}{2\sqrt{C(\alpha-\gamma)}},\,$$

and is differentiable at x' = 0. Therefore the open subset $S - \{O\}$ of S has also a differentiable structure. Hence the manifold S with metric form (1.9) is diffeomorphic to a 2-sphere S^2 .

The Gaussian curvature of the manifold S is equal to

$$(1.10) -\frac{\rho'''(x)}{\rho'(x)} = 12C\rho.$$

2. Let $\rho_1(x)$ and $\rho_2(z)$ be elliptic functions satisfying the equations of the same type as (1.1), in which the constants B and C are common, and A may be different ones, say A_1 and A_2 for ρ_1 and ρ_2 respectively. The constants in (1.2) for ρ_1 and ρ_2 will be indicated by suffixing 1 and 2 respectively.

Let M_1 and M_2 be 2-dimensional Riemannian manifolds such as S constructed in §1 with the functions $\rho_1(x)$ and $\rho_2(z)$ for ρ respectively, and $(x^h) = (x, y)$ and $(x^p) = (z, w)$ their local coordinate systems. We consider the Pythagorean product $M = M_1 \times M_2$, and denote the totality (x^h, x^p) of the coordinate systems by (x^k) . Latin indices run on the ranges

$$h, i, j, k = 1, 2;$$
 $p, q, r, s = 3, 4,$

and Greek indices run on the range from 1 to 4.

The metric tensor $g_{\mu\lambda}$, the Christoffel symbol $\{^{\kappa}_{\mu\lambda}\}$, the curvature tensor $K_{\nu\mu\lambda}^{\kappa}$ and the Ricci tensor $K_{\mu\lambda}$ of the product manifold $M=M_1\times M_2$ have pure components only. The scalar curvature κ of M is defined by

$$\kappa = \frac{1}{12} K_{\mu\lambda} g^{\mu\lambda}$$

and related to the scalar curvatures, i.e., the Gaussian curvatures κ_1 and κ_2 of M_1 and M_2 by the equation

$$6\kappa = \kappa_1 + \kappa_2.$$

Taking account of (1.10) and putting

$$\sigma = \rho_1 + \rho_2,$$

we see that the scalar curvature κ of M is expressed as

$$\kappa = 2C\sigma$$
.

The curvature tensors of the 2-dimensional manifolds M_1 and M_2 are given respectively by

(2.2)
$$K_{kji}^{h} = 12C\rho_{1}\left(\delta_{k}^{h}g_{ji} - \delta_{j}^{h}g_{ki}\right),$$
$$K_{srq}^{p} = 12C\rho_{2}\left(\delta_{s}^{p}g_{rq} - \delta_{r}^{p}q_{sq}\right),$$

which are the pure components of the curvature tensor $K_{\nu\mu\lambda}{}^{\kappa}$ of M.

We indicate by ∇ covariant differentiation in $M = M_1 \times M_2$. For ρ_1 in M_1 and ρ_2 in M_2 , (1.1) and (1.2) are rewritten in the tensor equations

(2.3)
$$|\nabla \rho_1|^2 = -4C\rho_1^3 + 2B\rho_1 - A_1, |\nabla \rho_2|^2 = -4C\rho_2^3 + 2B\rho_2 - A_2;$$

(2.4)
$$\nabla_{j}\nabla_{i}\rho_{1} = \left(-6C\rho_{1}^{2} + B\right)g_{ji},$$

$$\nabla_{q}\nabla_{p}\rho_{2} = \left(-6C\rho_{2}^{2} + B\right)g_{qp},$$

where $|\nabla \rho_1|^2$ is the length of the gradient vector $\nabla_i \rho_1$. If we put $\sigma_{\lambda} = \nabla_{\lambda} \sigma$, then $\sigma_i = \nabla_i \rho_1$ and $\sigma_q = \nabla_q \rho_2$, and we have

(2.5)
$$\sigma_{\lambda}\sigma^{\lambda} = |\nabla \rho_1|^2 + |\nabla \rho_2|^2.$$

For our purpose we construct a 4-dimensional Riemannian manifold M^* from the product manifold M by a conformal change of metric

$$g_{\mu\lambda}^* = \frac{1}{\sigma^2} g_{\mu\lambda}$$

with the associated scalar field σ given by (2.1). The scalar field σ takes the minimum value $\beta_1 + \beta_2$, and we suppose that $\beta_1 + \beta_2 > 0$ or equivalently

$$A_1 + A_2 > 0$$

in order that σ be always positive.

We denote quantities of M^* by asterisking the characters corresponding to those of M. Under the conformal change (2.6), we have the transformation formulas

(2.7)
$$\left\{ {\kappa \atop \mu \lambda} \right\}^* = \left\{ {\kappa \atop \mu \lambda} \right\} - \frac{1}{\sigma} \left(\delta_{\mu}^{\kappa} \sigma_{\lambda} + \delta_{\lambda}^{\kappa} \sigma_{\mu} - g_{\mu \lambda} \sigma^{\kappa} \right),$$

$$K^*_{\nu \mu \lambda}{}^{\kappa} = K_{\nu \mu \lambda}{}^{\kappa} + \frac{1}{\sigma} \left(\delta_{\nu}^{\kappa} \nabla_{\mu} \sigma_{\lambda} - \delta_{\mu}^{\kappa} \nabla_{\nu} \sigma_{\lambda} + g_{\mu \lambda} \nabla_{\nu} \sigma^{\kappa} - g_{\nu \lambda} \nabla_{\mu} \sigma^{\kappa} \right)$$

$$- \frac{1}{\sigma^2} \sigma_{\omega} \sigma^{\omega} \left(\delta_{\nu}^{\kappa} g_{\mu \lambda} - \delta_{\mu}^{\kappa} g_{\nu \lambda} \right).$$

Referring the last equation (2.8) to the separate coordinate system (x^h, x^p) , noting (2.5) and using (2.2), (2.3) and (2.4), we obtain the nontrivial components

(2.9)
$$K_{kjih}^* = (A_1 + A_2 + 4C\sigma^3)(g_{kh}^* g_{ji}^* - g_{jh}^* g_{ki}^*),$$

$$K_{qjip}^* = (A_1 + A_2 - 2C\sigma^3)g_{qp}^* g_{ji}^*,$$

$$K_{srap}^* = (A_1 + A_2 + 4C\sigma^3)(g_{sp}^* g_{ra}^* - g_{ra}^* g_{sp}^*),$$

of the curvature tensor of M^* and the other components vanish.

The product structure $F = (F_{\lambda}^{\kappa})$ of $M = M_1 \times M_2$ has eigenvalues 1, 1, -1, -1, and composes an almost product structure together with the metric tensor $g_{u\lambda}^*$ of M^* , i.e.,

$$g_{\nu\mu}^* F_{\lambda}^{\ \nu} F_{\kappa}^{\ \mu} = g_{\lambda\kappa}^*.$$

We put $F_{\mu\lambda}^* = F_{\mu}^{\kappa} g_{\lambda\kappa}^*$, which is a symmetric tensor. Then equations (2.9) turn to the tensor equation

(2.10)
$$K_{\nu\mu\lambda\kappa}^* = (A_1 + A_2 + C\sigma^3)(g_{\nu\kappa}^* g_{\mu\lambda}^* - g_{\mu\kappa}^* g_{\nu\lambda}^*) + 3C\sigma^3(F_{\nu\kappa}^* F_{\nu\lambda}^* - F_{\kappa\kappa}^* F_{\nu\lambda}^*).$$

Since $F_{\lambda}^{\lambda} = 0$, transvection of this equation with $g^{*\nu\kappa}$ gives

$$(2.11) K_{u\lambda}^* = 3(A_1 + A_2)g_{u\lambda}^*,$$

that is, the manifold M^* is Einsteinian.

Covariantly differentiating the almost product structure F_{λ}^{κ} with respect to the metric $g_{\mu\lambda}^{*}$ of M^{*} , substituting the formula (2.7), and taking account of the integrability $\nabla_{\mu}F_{\lambda}^{\kappa}=0$ in M, we obtain

(2.12)
$$\nabla_{\mu}^* F_{\lambda\kappa}^* = \frac{1}{\sigma} \Big(F_{\mu\lambda}^* \sigma_{\kappa} + F_{\mu\kappa}^* \sigma_{\lambda} - g_{\mu\lambda}^* F_{\kappa}^{\omega} \sigma_{\omega} - g_{\mu\kappa}^* F_{\lambda}^{\omega} \sigma_{\omega} \Big).$$

The covariant derivative of the curvature tensor (2.10) of M^* is equal to

(2.13)
$$\nabla_{\omega}^{*}K_{\nu\mu\lambda\kappa}^{*} = 3C\sigma^{2} \Big[\sigma_{\omega} (g_{\nu\kappa}^{*}g_{\mu\lambda}^{*} - g_{\mu\kappa}^{*}g_{\nu\lambda}^{*}) + 3\sigma_{\omega} (F_{\nu\kappa}^{*}F_{\mu\lambda}^{*} - F_{\mu\kappa}^{*}F_{\nu\lambda}^{*}) + \sigma \nabla_{\omega}^{*} (F_{\nu\kappa}^{*}F_{\mu\lambda}^{*} - F_{\mu\kappa}^{*}F_{\nu\lambda}^{*}) \Big].$$

The covariant tensor $(F_{\mu\lambda}^*)$ has components

$$\left(F_{\mu\lambda}^{*}\right) = \begin{pmatrix} g_{ji}^{*} & 0\\ 0 & -g_{qp}^{*} \end{pmatrix}$$

with respect to a separate coordinate (x^h, x^p) . By means of (2.12), nontrivial components of $\nabla_u^* F_{\lambda \kappa}^*$ are only

(2.14)
$$\nabla_{j}^{*}F_{ip}^{*} = \frac{2}{\sigma}g_{ji}^{*}\sigma_{p}, \quad \nabla_{q}^{*}F_{ip}^{*} = -\frac{2}{\sigma}g_{qp}^{*}\sigma_{i}.$$

The covariant derivative of the curvature tensor of M^* has for example nontrivial components

$$\nabla_{\omega}^* K_{kjih}^* = 12 C \sigma^2 \sigma_{\omega} (g_{kh}^* g_{ji}^* - g_{jh}^* g_{ki}^*).$$

The manifold M^* is therefore not symmetric.

Denote by $\kappa^*(X, Y)$ the sectional curvature belonging to tangent vectors X, Y. If both X and Y are tangent to one of the parts M_1 and M_2 of M as the underlying manifold of M^* , by means of the first and third expressions of (2.9), the sectional curvature $\kappa^*(X, Y)$ is equal to

(2.15)
$$\kappa^*(X,Y) = A_1 + A_2 + 4C\sigma^3,$$

which is always positive. On the other hand, if X and Y are tangent to M_1 and M_2 respectively, then the sectional curvature $\kappa^*(X, Y)$ is equal to

(2.16)
$$\kappa^*(X,Y) = A_1 + A_2 - 2C\sigma^3$$

by means of the second of (2.9).

We suppose here $A_1 = A_2$. Then the functions $\rho_1(x)$ and $\rho_2(z)$ are the same and have the same constants, so we omit the suffices 1 and 2. The constants A, α and β are positive. By means of (1.3), the minimum of the sectional curvature (2.16) is equal to

$$\min \kappa^*(X,Y) = 2A - 16C\alpha^3 = 8C\alpha(2\alpha + \beta)(\beta - \alpha),$$

which is negative. Therefore in this case the manifold M^* has saddle points.

Bibliography

- [1] N. Hitchin, Compact four-dimensional Einstein manifolds, J. Differential Geometry 9 (1974) 435-441.
- [2] Y. Tashiro, On conformal diffeomorphisms of 4-dimensional Riemannian manifolds, Kodai Math. Sem. Rep. 27 (1976) 436-444.

HIROSHIMA UNIVERSITY, JAPAN